Comments on Hastings’ Additivity Counterexamples
نویسندگان
چکیده
منابع مشابه
Comments on Hastings’ Additivity Counterexamples
3 Background on random states and channels 7 3.1 Probability distributions for states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Probability distributions on the simplex ∆d . . . . . . . . . . . . . . . . . . . . . . 8 3.3 Estimates for μd,n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Probability distribution for random unitary channels . ....
متن کاملCounterexamples to additivity of minimum output p - Rényi entropy for p close to 0
Toby Cubitt,1 Aram W. Harrow,2 Debbie Leung,3 Ashley Montanaro,2 and Andreas Winter1, 4 Department of Mathematics, University of Bristol, Bristol BS8 1TW, U.K. Department of Computer Science, University of Bristol, Bristol BS8 1UB, U.K. Insitute for Quantum Computing, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada Centre for Quantum Technologies, National University of Singapore, 2 S...
متن کاملResponse to: Comments on "Property-Based Software Engineering Measurement: Refining the Additivity Properties"
The recently published measure property set of Briand, Morasca, and Basili [1] establishes the foundation of a real software measurement theory. Unfortunately, a number of inconsistencies related to additivity properties might hinder its acceptance and further elaboration. In this paper, it is shown how to remove the ambiguity in the property definitions.
متن کاملOn directional Metropolis-Hastings algorithms
Metropolis–Hastings algorithms are used to simulate Markov chains with limiting distribution equal to a specified target distribution. The current paper studies target densities on R. In directional Metropolis–Hastings algorithms each iteration consists of three steps i) generate a line by sampling an auxiliary variable, ii) propose a new state along the line, and iii) accept/reject according t...
متن کاملOn adaptive Metropolis-Hastings methods
This paper presents a method for adaptation in Metropolis-Hastings algorithms. A product of a proposal density and K copies of the target density is used to define a joint density which is sampled by a Gibbs sampler including a Metropolis step. This provides a framework for adaptation since the current value of all K copies of the target distribution can be used in the proposal distribution. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2010
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-010-0996-9